Transition-metal Tetra-oxo-complexes and their Vibrational Spectra

By F. Gonzalez-Vilchez and W. P. Griffith,* Department of Chemistry, Imperial College, London S.W.7

The vibrational spectra of a number of transition metal tetra-oxo-complexes are reported for the first time, including those of salts containing the anions $[RuO_4]^{-}$; $[MO_4]^{2-}$ (M = Mn, Fe, or Ru); $[MO_4]^{3-}$ (M = Cr, Mn, Re, or Fe); and $[MO_4]^{4-}$ (M = Ti, V, Cr, Mo, W, Fe, or Co). From these measurements and published data on the fundamental frequencies of other such ions we calculate force constants for most of the known transition-metal tetra-oxo-anions. Raman data on $[Cr^{18}O_4]^{2-}$ and $[W^{18}O_4]^{2-}$ are also presented

THERE have been a number of reports on the vibrational spectra of the tetra-oxo tetrahedral complexes, $[MO_4]^{n-}$, of transition metals, and these have recently been reviewed; ¹ there have also been several force-constant calculations on the basis of these results using various force fields.^{1,2} The two most recent studies, and probably the best, have been concerned with Os¹⁸O₄ and Os¹⁸O₄³ and on RuO₄.⁴ In this paper we present results of the Raman (200—1200 cm⁻¹) and i.r. (200—1200 cm⁻¹) measurements on the salts of the many hitherto un-

suitable for tetra-oxo species,² and to attempt some correlation of the results in terms of the metal-oxygen bonding in the complexes. Many of the salts studied were either insoluble or were attacked by solvents and so had to be studied in the solid state; it was possible to

studied $[MO_4]^{n-}$ ions, particularly those involving the

metal in lower oxidation states. The aim has been to

establish the fundamental vibrational modes, to test the modified valence force field which is said to be the most

¹ W. P. Griffith, Co-ordination Chem. Rev., 1970, 5, 459.

A. Müller and B. Krebs, J. Mol. Spectroscopy, 1967, 24, 180; A. Müller and A. Fadini, Spectroschim. Acta, 1966, 22, 1523.

³ R. S. McDowell and M. Goldblatt, Inorg. Chem., 1971, 10, 625.

⁴ I. W. Levin and S. Abramowitz, *J. Chem. Phys.*, 1969, **50**, 4860.

obtain Raman spectra in aqueous solution only of $[MnO_4]^{2-}$, $[RuO_4]^{2-}$, $[VO_4]^{3-}$, $[CrO_4]^{3-}$, and $[FeO_4]^{2-}$.

For an undistorted tetrahedron $(T_d \text{ symmetry})$ there are four fundamental vibrational modes $(A_1 + E + 2F_2)$; all Raman-active with the A_1 mode polarised; only the F_2 modes are i.r. active). Two of the modes are predominantly of the stretching type, v_1 (A₁) and v_3 (F₂), and the other two are deformations, v_2 (E) and v_4 (F₂). In Table 1 we list the assignments for these four modes for all the ions studied here together with published

TABLE 1

Fundamental vibrational modes and MVFF constants for tetra-oxo-complexes

	٧,	٧٠	٧.	V4				
	(A_1)	(\tilde{E})	(\check{F}_2)	$(\vec{F_2})$	fa	faa	f_{α}	faa
RuO. ª	883	338	918	332	6.714	0.21	0.39	0.02
OsO, b	965	333	961	329	8.03	0.225	0.43	0.04
[MnO ₄] - c	838	355	921	429	5.79	0.28	0.59	0.10
TcO,]- d	912	325	912	325	6.75	0.38	0.37	0.02
ReO	971	332	916	332	7.50	0.45	0.43	0.04
K[RuO]	830	339	845	312	5.75	0.25	0.34	0.02
$[CrO_4]^{2-f}$	847	348	884	368	5.48	0.43	0.42	0.02
MoO_{4}] ^{2-d}	897	318	841	318	5.94	0.55	0.35	0.02
WO4 2- 6	931	324	833	324	6.42	0.58	0.41	0.04
MnO ₄] ²⁻ *	812	325	820	332	4.88	0.45	0.35	0.07
FeO4 2- *	832	340	790	322	4.73	0.59	0.32	0.01
RuO ₄] ²⁻ *	840	331	804	336	5.39	0.42	0.40	0.03
VO13- *	827	337	780	341	4.53	0.64	0.36	0.00
CrO ₄] ³⁻ *	834	260	860	324	5.25	0.44	0.38	0.06
K _a [MnO ₄]	810	324	838	349	5.01	0.39	0.38	0.02
Li	808	264	853	319	6.13	0.01	0.27	0.01
K _a [FeO ₄]	776	265	805	335	4.63	0.45	0.32	0.06
Ba, [TiO]	761	306	770	371	4.09	0.52	0.42	0.07
Li ₄ [ZrO ₄]	792	332	846	387	5.51	0.14	0.52	0.09
Li ₄ [HfO ₄]	796	325	800	379	5.51	0.16	0.56	0.11
Ba, VO,	818	319	780	368	4.49	0.60	0.42	0.00
Ba, CrO,	806	353	855	404	5.02	0.37	0.53	0.07
Ba, MoO1	792	328	808	373	5.19	0.24	0.53	0.10
Ba ₂ [WO ₄]	821	323	840	367	6.04	0.11	0.58	0.13
Ba [FeO]	762	257	857	314	5.05	0.14	0.31	0.02
$Ba_2[CoO_4]$	790	300	855	340	5.17	0.21	0.36	0.04

Ref. 4. ^b Ref. 3. ^c P. J. Hendra, Spectrochim. Acta, 1968,
 24A, 125; S. Pinchas, D. Samuel, and E. Petreanu, J. Inorg. Nuclear Chem., 1967, 29, 335. ^d Ref. 23. ^e Ref. 21. D. Bassi and O. Sala, Spectrochim. Acta, 1958, 12, 403.

Spectra measured in aqueous solution for ions (or * aqueous alkali) RuO4 measured in pure liquid phase, ref. 4; OsO4 in vapour phase; other data from Table 2. Frequencies in cm⁻¹; no corrections made for anharmonicity. Force constants in mdyn/Å.

data¹ on other transition-metal tetra-oxo-anions. In Table 2 we give the results of our studies on the spectra of $[MO_4]^{n-}$ species; the assignment from the bands observed of the four modes presents a number of difficulties, especially where solid-state results have to be used. In general the site symmetry of the $[MO_4]^{n-}$ ion in a crystal lattice is lower than T_d ; such site symmetries are usually obtainable from X-ray data and the use of correlation diagrams allows us to predict the consequent splitting of the four fundamental 'free ion' modes (although a factor group analysis is more appropriate in such cases, we have shown that for a wide variety of $[MO_4]^{n-}$ species a simple site symmetry approach is adequate for assignment purposes 5). The expected splittings for v_2 , v_3 , and v_4 for different site symmetries have been listed.⁵ The totally symmetric MO₄ stretch v_1 is easily identified by its intensity in the Raman of $[MO_4]^{n-}$ species; in solutions of the ions, it is the only polarised Raman mode. The asymmetric stretch v_3 is normally very strong in the i.r. but usually weak or even absent in the Raman; being triply degenerate (like v_{4}) it is frequently split in i.r. spectra of the solids. The assignment of v_2 and v_4 is difficult in some cases; we assume that v_4 will be stronger than v_2 in the i.r. (in the free ions v_2 is Raman-active only) and v_4 is usually more split in the solid salts than v_2 , since it is triply degenerate and v_2 doubly degenerate. Nevertheless these assignments may sometimes be tentative and it is quite possible that in some cases our assignments for v_2 and v_4 in Table 1 should be reversed. In some cases also, particularly for the heavier metals, the deformations may coincide. No corrections for anharmonicity have been made for any of the frequencies given.

ASSIGNMENT OF MODES

 $M^{VIII}O_4$ Complexes.—In Table 1 we quote the most recent values for osmium³ and ruthenium⁴ tetroxides; isotopic data are available for both.^{3,4}

 $[M^{VII}O_4]^-$ Complexes.—We could obtain solid-state data only for $K[RuO_4]$ since this (and other perruthenate salts) disproportionate in water. X-Ray data on K[RuO₄] indicate a scheelite structure with a Ru-O bond length of 1.79 Å and S_4 site symmetry for the anion; ⁶ in agreement with this we find v_3 and v_4 to be split into doublets. We assign v_4 to the intense Raman band at 312 cm^{-1} and v_2 to the Raman band at 339 cm^{-1} .

 $[M^{VI}O_4]^{2-}$ Complexes.—Unequivocal assignments for v_1 (polarised) and v_3 (depolarised) are provided by the solution Raman data for potassium manganate and ruthenate. For the former, the 325 cm⁻¹ Raman band is assigned to v_2 and that at 332 cm⁻¹ to v_4 (since in solid $K_2[MnO_4]$ there is a strong band at 333 cm⁻¹ presumably due to v_4). The X-ray crystal structure of $K_2[MnO_4]$ shows a site symmetry of C_s for the anion, hence the complex splitting of ν_3 and ν_4 modes; the Mn–O distance of 1.659 Å is, as expected, slightly longer than that in $\rm K[MnO_4]~(1\cdot629~{\rm \AA}).^{7}~In~K_2[RuO_4]$ the 336 cm⁻¹ band is assigned to ν_4 and that at 331 cm^-1 to ν_2 (solid Ba[RuO_4] has a single i.r. band at 330 cm⁻¹ presumably due to v_{4}).

Potassium ferrate, $K_2[FeO_4]$, is isomorphous with $K_2[CrO_4]$ and has C_s site symmetry for the anion; we reverse the literature assignments of v_1 and v_3 based on the solid-state i.r. spectrum of this salt⁸ from the state of polarisation of lines in the Raman spectrum of the alkaline solution. For the deformations, v_4 is assigned as having a slightly lower frequency than v_2 as the solid salt has a strong i.r. band at 319 cm⁻¹.

- G. J. Palenik, Inorg. Chem., 1967, 6, 507.
- ⁸ P. Tarte and G. Nizet, Spectrochim. Acta, 1964, 20, 503.

⁵ W. P. Griffith, J. Chem. Soc. (A), 1970, 286. ⁶ M. D. Silverman and H. A. Levy, J. Amer. Chem. Soc., 1954, 76, 3317.

	$v_1(A$	1)	() ν ₂ (.	E)	ν ₃ (F	$\nu_3(F_2)$ $\nu_4(F_2)$		Other strong bands		
	R	i.r.	R	i.r.	R	i. r .	R	i.r.	~	
[MO ₄]- salts K[RuO ₄]	830(10)		339(1)		840w	846s 835m	317w 312(4)	316m 305s		
[MO.] ²⁻ salts										
$K_2[MnO_4] *$	812(10)p		325(3)		820(3)dp		332(2)			
$K_2[MnO_4]$	813(10)	810w	325(3)	327w 322w	841w´ 836w	844m 835v	$339(\frac{1}{2})$	333s 326m 321m	860(1)	301 m
$Ba[MnO_4]$	803(10)		$330(\frac{1}{2})$	33 0w	840w 824w	857s 838m 828m	338(2)	336s 326m 321m	875(1) 660(3)b	690m 620m 201a
K ₂ [FeO ₄] *	832(10)p		340(3)		790(6)dp	02011	322(5)	5 2111		3015
$K_2[FeO_4]$	830(10)		$336(\frac{1}{2})$	34 0m	796(6) 786(1)	816w 796vs 780m	318(2) 312(3) 307(1)	324w 319vs 311w	840(2)	620s 297w
$\mathrm{K_{2}[RuO_{4}]}*\mathrm{Ba}[RuO_{4}]$	840(10)p		331(3)		804(2)p	818m 812vs 806m	336(6)	330s		
[MO ₄] ³⁻ salts										
$K_3[CrO_4] * Ba_3[CrO_4]_2$	834(10)p 828(10)	824w	$260(1) \\ 276(1)$	280w	860(2)dp	868m 855vs	$324(4) \\ 319(6)$	319s 309w	763(5) 676(2)	762vs
K₃[MnO₄]	810(10)	810m	324(4)		839(2)	844w 860w 838vs	349(2)		276(1)	
$Cs_3[MnO_4]$	810(10)	805w	$328(\frac{1}{2})$		836(2)	820w 843m 831vs 810w	364(2)	368w 364vs	736(1)	4 60w
$Li_3[ReO_4]$	8 0 8(10)	800w	264(1)	26 4 m	863w 848w	869m 853vs 836m	333(3) 320(3) 317(1)	332m 319vs	700(3) 505(4) 474(4)	680b
$\mathrm{K}_{3}[\mathrm{FeO}_{4}]$	776(10)	780m	265(2)	26 4 w	818(5)	820m 805s 798m	317(1) $347(\frac{1}{2})$ 335(3)	339w 335vs 331w	474(4) 870(4)	856m 617s
[MO.]4- salts										
$\operatorname{Ba}_2[\operatorname{TiO}_4]$	761(10)	761w	$315(\frac{1}{2})$ 306(4)	319m 310w	775(2)	780m 770vs 765m	$384(\frac{1}{2}) \ 373(\frac{1}{2})$	371s	$692(2) \\ 255(3)$	698s 500m 228m
$Li_4[ZrO_4]$	792(10)		$342(2) \\ 332(2)$	32 0w	$851(1) \\ 835(3)$	846s	$389(1) \\ 380(4)$	392w 387vs	616(1) 596(7)	538m 740s 520s
Li ₄ [HfO ₄]	796(10)		$332(1) \\ 325(1)$	32 0w		800s 772m	384(6) 366(2)	380m 390w 386m	474(3) 636(3) 592(8)	608s 510m
$\operatorname{Ba}_2[\operatorname{VO}_4]$	818(10)	820w	319w	333s 324m	788w 776(<u>‡</u>)	808m 780s	$379(2) \\ 368(4)$	368m 367m 364s		477s 672s 573m
$Mg_2[VO_4]$	816(10)	820vw	333(2)	333 w	762(2) $788(\frac{1}{2})$ 764(4)	766vs	$361(\frac{1}{2}) \\ 380(1) \\ 368(4)$	360w 367m 364s		471m 574s 480s
$\operatorname{Ba}_2[\operatorname{CrO}_4]$	806(6)		$361(4) \\ 353(6)$	373m 369w		873m 855vs	$361w \\ 404(3)$	360w 416s 412w	$862(10) \\ 464(1)$	890m 768m
$\operatorname{Ba}_2[\operatorname{MoO}_4]$	792(10)	7 90w	328(5)	325m 327s		825m 824w 808vs	$398(3) \\ 352(4)$	390s 373s	$891(5) \\704(1)$	692s 510b 293w
$\operatorname{Ba}_2[\operatorname{WO}_4]$	821(10)	820w	323(6)	329m		850w 840vs	$398(5) \\ 367(4)$	$371\mathrm{s}$ $365\mathrm{sh}$	$666(1) \\ 410(2)$	682s
$Ba_2[FeO_4]$	762(10)		257(3)		846(1)	784w 892m 857m	324w 320w	320m 314s	688(8) 500(9)	692m 500s
$Na_{4}[FeO_{4}]$	796(10)	798w	280w			823w 878s 853m	338w 332(4)	3 08m	716(4) 415(2)	693m 633s
$\operatorname{Ba}_2[\operatorname{CoO}_4]$	790(10)		303(2) 296(2)	301m 295w	850(2) 830(2)	855s 840m	$340(\frac{1}{2})$	340s 335m	720(2) 690(6) 600(6)	464s 768m 732m 692w

TABLE 2Raman (R) and i.r. frequencies for tetra-oxo-complex salts

Raman (R) and i.r. spectra on sosid salts. * Aqueous solutions; spectra 200-1200 cm⁻¹.

We also report the Raman spectra of aqueous solutions of $[Cr^{18}O_4]^{2-}$ and $[W^{18}O_4]^{2-}$; the values of the fundamentals are used to provide a check for the calculation of force constants (see below).

 $[M^{\nabla}O_4]^{3-}$ Complexes.—For $K_3[CrO_4]$ polarisation data for the alkaline aqueous solution allow unambiguous assignment of v_1 and v_3 , and we assign v_4 to 324 cm⁻¹ as the barium salt $Ba_3[CrO_4]_2$ (which is known to contain no direct evidence that $Li_4[ZrO_4]$ or $Li_4[HfO_4]$ contain tetrahedra, but the appearance of their Raman and i.r. spectra suggests that this is the case.

In a number of cases quoted in Table 2, bands were observed in the i.r. and Raman spectra of the salts which could not be assigned with confidence to any of the four fundamental vibrational modes; these occur most frequently for the barium salts and are found ca. 600

<i>Table</i>	3
---------------------	---

Fundamental modes of vibration and force constants for $[M^{16}O_4]^{n-}$ and $[M^{18}O_4]^{n-}$ complexes

	ν ₁	ν2	ν ₃	v_4 F_1	1 F ₂₂	F_{33}	F_{34}	F_{44}	fa	faa	$(f_{\alpha} - f_{\alpha\alpha})$	$(f_{\alpha\alpha} - f_{\alpha\alpha'})$	$(f_{d\alpha} - f_{d\alpha'})$
$[Cr^{16}O_4]^{2-}$ $[Cr^{18}O_4]^{2-}$ $[Cr^{18}O_4]^{2-}$ *	847 799 798	348 330 328	$884 \\ 850 \\ 851$	$\left. \begin{array}{c} 368 \\ 353 \\ 355 \end{array} \right\} \;\; 6\cdot 7$	6 0.38	5.05	0.08	0.40	5.48	0.43	0.39	0.01	0.06
$[W^{16}O_4]^{2-}$ $[W^{18}O_4]^{2-}$ $[W^{18}O_4]^{2-} *$	931 879 878	324 309 305	833 791 791	$egin{array}{c} 324 \ 309 \ 309 \ \end{array} iggree 8 \cdot 1 \ 309 \ \end{array}$	7 0.33	5.82	-0.1	0.35	6.42	0.56	0.34	0.01	-0.02
$\begin{array}{c} \operatorname{OS}^{16}\operatorname{O}_4^{a}\\ \operatorname{OS}^{18}\operatorname{O}_4^{a}\\ \operatorname{OS}^{18}\operatorname{O}_4^{a} \end{array}$	965 910 910	$333 \\ 316 \\ 314$	$961 \\ 912 \\ 912$	$egin{array}{c} 329 \ 313 \ 313 \ 313 \ \end{array} iggin{array}{c} 8\cdot 7 \ 313 \ \end{array}$	0 0.35	7.80	0.04	0.42	8.03	0.22	0.37	0.02	0.03

* Calculated frequencies using MVFF of Table 1.

^a From ref. 3, using uncorrected frequencies; force constants in mdyn/Å.

 $[CrO_4]^{3-}$ tetrahedra ⁹), and solid $K_3[CrO_4]$ have i.r. bands near this frequency. There are no structural data on K₃[CrO₄], but the Cr-O bond length in Ca₅[CrO₄]₃OH has been shown to be 1.66 Å.9

Several salts of the very unstable 'hypomanganate' ion $[MnO_4]^{3-}$ were made; all had similar spectra, but reliable solution data could not be obtained. For the solid salts examined, comparison of Raman and i.r. spectra suggested that v_4 is higher than v_2 (no structural data for these salts are reported). Although the salt Li₃[ReO₄] is reported in the literature ¹⁰ no synthetic details are supplied, so we used a preparative method similar to that employed for $Li_3[MnO_4]$.¹¹ For $K_3[FeO_4]$ the only far-i.r. band is at 335 cm⁻¹ which is accordingly assigned to v_4 ; X-ray studies show that the salt contains tetrahedral anions.12

 $[M^{IV}O_4]^{4-}$ Complexes.—Most of these were studied as the solid barium salts since no aqueous solutions of $[MO_4]^{4-}$ transition-metal species are stable. It has been shown by an X-ray crystal study that Ba₂[TiO₄] contains discrete $[\text{TiO}_4]^{4-}$ tetrahedra (Ti-O = 1.70 Å);the anion has C_s site symmetry,¹³ and it has been shown that all the other $Ba_{2}[MO_{4}]$ salts in Table 1 are isomorphous with Ba₂[TiO₄].^{14,15} † The splitting of bands which we assign to ν_3 and ν_4 into triplets, and ν_2 into doublets, is consistent with C_s site symmetry. There is cm⁻¹. These we believe to arise from Ba-O stretching modes; bands below 250 cm⁻¹ may arise from deformation modes.

FORCE CONSTANTS

A number of force fields have been applied to tetraoxo-species ^{1,2} these include a general valence (GVFF),³ Urey-Bradley,¹⁶ orbital valency ¹⁷ and modified valency force field (MVFF).²

Since there are only four frequencies to calculate the five symmetry force constants F_{ij} for $[MO_4]^{n-}$ molecules we have to fix one of these values; we have chosen to place $F_{34} = 0$, and so to use the MVFF approximation. This appears from previous work² to provide reasonable force constants for transition-metal tetra-oxo-complexes. and its extension to a large number of other species of this type is one of the main objectives of this work. As a check on the validity of the MVFF we have measured the four fundamental modes for solutions of $[Cr^{18}O_4]^{2-}$ and for $[W^{18}O_4]^{2-}$ and calculated F_{34} for these molecules; the results in Table 3 show that for both molecules F_{34} is very small. Isotopic data, Coriolis constants, and mean amplitudes of vibration have also shown that F_{34} is small $(0.1 \pm 0.1 \text{ for } OsO_4, ^3 - 0.3 \pm 0.3 \text{ for } RuO_4 ^4)$. A further justification for use of the MVFF is the closeness of the calculated and observed frequencies for $[Cr^{18}O_4]^{2-}$ and $[W^{18}O_4]^{2-}$; the calculated frequencies (in Table 3)

- ¹⁴ R. Scholder and W. Klemm, Angew. Chem., 1954, 66, 461.
 ¹⁵ R. Scholder and G. Sperka, Z. anorg. Chem., 1956, 285, 49.
 ¹⁶ A. Müller, R. Ahrlich, and B. Krebs, Z. Naturforsch., 1966,
- 21, 719.
 - ¹⁷ B. Krebs and A. Müller, J. Mol. Spectroscopy, 1967, 22, 290.

[†] Recently, Ba₂[CoO₄] has been shown to contain discrete $[CoO_4]^{4-}$ tetrahedron of C_4 symmetry (Co-O = 1.76 Å) (M. Mattausch and H. Mueller-Buschbaum, Z. anorg. Chem., 1971, **386**, 1)

⁹ K. A. Wilhelmi and O. Jonsson, Acta Chem. Scand., 1965, **19**, 177.

¹⁰ R. Scholder, Angew Chem., 1958, 70, 583.

¹¹ R. Scholder, D. Fischer, and H. Waterstradt, Z. anorg. Chem., 1954, 277, 234.

¹² W. Klemm, quoted by A. Carrington and M. C. R. Symons, Chem. Rev., 1963, 63, 443.

J. A. Bland, Acta Cryst., 1961, 14, 875.

are obtained using the MVFF values obtained for $[Cr^{16}O_4]^{2-}$ and $[W^{16}O_4]^{2-}$. The equations for the G and F matrices for the MVFF are 2,18

$$\begin{array}{ll} ({\rm for} \ {\bf v_1}) \ G_{11} = \mu_0 & F_{11} = f_d + 3f_{dd} \\ ({\rm for} \ {\bf v_2}) \ G_{22} = 3\mu_0 & F_{22} = f_\alpha - 2f_{\alpha\alpha} \\ ({\rm for} \ {\bf v_3} \ {\rm and} \ {\bf v_4}): & \\ G_{33} = (4\mu_{\rm M}/3) + \mu_0 & F_{33} = f_d - f_{dd} \\ G_{34} = -(8\mu_{\rm M}/3) & F_{34} = 0 \\ G_{44} = (16\mu_{\rm M}/3) + 2\mu_0 & F_{44} = f_\alpha \end{array}$$

(the notation used is that of Müller and Fadini²). In Table 1 we list values, using the MVFF, for f_d (stretching force constant), f_{dd} (stretch-stretch interaction), f_{α} (deformation constant), and $f_{\alpha\alpha}$ (interaction constant for adjacent angles). The MVFF² assumes that three further interaction constants have zero values ($f_{\alpha\alpha'}$, interaction of opposite angles; $f_{d\alpha}$, interaction of a bond with angles including the bond; and $f_{d\alpha'}$, interaction of the bond stretch with other angles). The general valence force field (GVFF) then has the same expressions for F_{11} and F_{33} as the MVFF, while for the other F values the following expressions hold: 2,18

$$F_{22} = f_{\alpha} + f_{\alpha\alpha'} - 2f_{\alpha\alpha}$$

$$F_{34} = \sqrt{2}(f_{d\alpha} - f_{d\alpha'})$$

$$F_{44} = f_{\alpha} - f_{\alpha\alpha'}$$

Although the use of ligand isotopes for determining F_{34} is a relatively approximate method, as the negative value of $(f_{d\alpha} - f_{d\alpha'})$ for tungstate shows, it is clear that the omission of F_{34} for MVFF calculations is not too serious. The calculations were performed on frequencies uncorrected for anharmonicity; v_1 is taken directly from Table 2 and the ν_2 , ν_3 , and ν_4 frequencies are usually taken as the strongest components of the bands assigned to these modes in Table 2.

DISCUSSION

Owing to the approximations of the MVFF, the lack of anharmonicity corrections and the fact that solids had to be used for the spectra so that true ' free ion ' values were not always obtainable, it is clear that the force constant figures are best used on a comparative basis only. It is evident that f_d drops with oxidation state for a given metal (e.g. $Ru^{VIII} > Ru^{VII} > Ru^{VI}$),

18 L. H. Jones and M. Goldblatt, J. Mol. Spectroscopy, 1958,

2, 103. ¹⁹ A. Müller and E. Diemann, Chem. Phys. Letters, 1971, 9, 369; A. Müller and B. Krebs, Spectrochim. Acta, 1967, 23A, 159.
 ²⁰ A. Müller, E. Diemann, and V. V. K. Rao, Ber., 1970, 103, 2961.

²¹ L. A. Woodward and H. L. Roberts, Trans. Faraday Soc., 1956, 52, 615.

²² B. Krebs and A. Müller, Z. Chem., 1967, 7, 243.

R. H. Busey and O. L. Keller, J. Chem. Phys., 1964, 41, 215.
 G. Brauer, 'Handbook of Preparative Inorganic Chemistry,'

Academic Press, New York, 1965, vol. 2, p. 1597.

an exception is $[MnO_4]^{3-}$ for which f_d is anomalously high. The same trend is seen within a series of isoelectronic species (e.g. $O^{VIII} > Re^{VII} > W^{VI}$; $Cr^{VI} >$ $V^{v} > Ti^{v}$; these effects clearly follow from the greater degree of $(\sigma + \pi)$ bonding in high oxidation states. The more effective $(\sigma + \pi)$ bonding of heavier elements in vertical Periodic triads is seen in the decrease of f_d from the third to first row in such groups (e.g. $\mathrm{Re}^{\mathrm{VII}} >$ $Tc^{VII} > Mn^{VII}$; $W^{VI} > Mo^{VI} > Cr^{VI}$).

Relationships between Force Constants and between Frequencies.—The observation 19 of an empirical relationship between f_d and the $(t_1 \rightarrow 2e)$ electronic transition for groups of d^0 ions of the same oxidation states is found to hold, but the observation that the f_{dd} : f_d ratio tends to be constant for species of the same oxidation state ²⁰ holds only for the (VIII), (VII), and (VI) states. The deformation constant f_{α} remains fairly constant for most species, with a slight tendency to higher values for the lighter elements and for lower oxidation states, and the deformation interaction constant $f_{\alpha\alpha}$ remains remarkably low for all species.

Clearly the symmetric stretch v_1 provides a better measure of f_d than does the asymmetric stretch v_3 . If our assignments are correct, for almost all species where v_3 exceeds v_1 then v_4 exceeds v_2 (and the reverse is also true in most cases: if $v_1 > v_3$, then $v_2 > v_4$). The expectation that $\nu_3>\nu_1$ and $\nu_4>\nu_2$ for lighter metals with equality or reversal for heavier metals 21, 22 is generally found, though there are exceptions. In particular, $v_3 > v_1$ and $v_4 > v_2$ for highly charged ions, which is perhaps to be expected since the symmetric stretching and deformation modes will involve more O-O repulsions than the asymmetric modes if negative charge tends to be localised on the oxo-ligands. Although it has been claimed that v_2 is too weak and broad to be observed for some ions (e.g. $[MnO_4]^{2-}$, $[WO_4]^{2-}$, $[TcO_4]^{-}$, and $[\text{ReO}_4]^-$,²³ the intensity of this mode in the other species studied by us suggests that, as has already been proposed, $^{1,\,21}$ ν_2 and ν_4 are simply coincident in these cases.

EXPERIMENTAL

The following salts were made by the standard literature methods: $K[RuO_4]^{24}$; $K_2[MnO_4]^{25}$; $K_2[FeO_4]^{26}$; $K_2[RuO_4]^{24}$ (the aqueous solution only was prepared); K₃[CrO₄]²⁷; Ba₃[CrO₄]₂²⁸; K₃[MnO₄] and Cs₃[MnO₄]¹¹; $Li_3[ReO_4]$ was made by a similar method; ¹¹ $K_3[FeO_4]^{27}$; $Ba_2[TiO_4]^{13}$; $Li_4[ZrO_4]$ and $Li_4[HfO_4]^{29}$; $Ba_2[VO_4]^{16}$; $Ba_2[CrO_4]^{15}$; $Ba_2[MOO_4]$ and $Ba_2[WO_4]^{14,30}$; Ba₂[FeO₄] and Na₄[FeO₄]³¹; Ba₂[CoO₄]^{10,14}. The barium

²⁵ R. S. Nyholm and P. R. Woolliams, Inorg. Synth., 1968, 11,

56.
²⁶ J. M. Schreyer, G. W. Thompson, and L. T. Ockerman, Inorg. Synth., 1953, 4, 164.
²⁷ R. Scholder and F. Schwochow, Z. anorg. Chem., 1968, 363,
²⁸ R. Scholder Bull. Soc. chim. France, 1965, 1112.

²⁸ R. Scholder and H. Suchy, Z. anorg. Chem., 1961, 308, 295. 29 R. Scholder, D. Rade, and H. Schwarze, Z. anorg. Chem., 1968, 362, 149.

R. Scholder and L. Brixner, Z. Naturforsch., 1955, 10, 178. ³¹ R. Scholder, H. V. Bunsen, and W. Zeiss, Z. anorg. Chem., 1956, 283, 330.

salts Ba[MnO₄] and Ba[RuO₄] were prepared by addition of barium chloride to solutions of K₂[MnO₄] and K₂[RuO₄] in potassium hydroxide solutions. The solutions of K₂[MnO₄], K₂[FeO₄], and K₃[CrO₄] were made by dissolving the solids in 10% aqueous potassium hydroxide solution under nitrogen.

I.r. spectra were measured as Nujol mulls between potassium bromide plates for the $400-1200 \text{ cm}^{-1}$ region and as Vaseline mulls between Polythene plates in the 200-400cm⁻¹ region on a Perkin-Elmer 325 instrument. Raman spectra of aqueous solutions were measured in capillary tubes and of solids as microcrystalline powders on a Cary 81 instrument with a CRL 52MG mixed-gas (argon-krypton) laser; red excitation (6471 Å) was used for red, brown, and purple samples; the yellow 5648 Å lines for chromate; the green 5145 Å line for green samples; and the blue 4880 Å line for blue and for colourless samples.

Oxygen-18 enriched $[Cr^{18}O_4]^{2-}$ was made by addition of potassium dichromate (0.025 g) to a 20% solution of Na¹⁸OH in H₂¹⁸O (98% enrichment, 0.5 ml; the calculated percentage of $[Cr^{18}O_4]^{2-}$ in the product is 74.8% and of $[Cr^{18}O_3]^{2-}$, 22.5%); $[W^{18}O_4]^{2-}$ was prepared by addition of solid tungsten hexachloride to 50% Na¹⁸OH in H₂¹⁸O (98% enrichment giving 92% of $[W^{18}O_4]^{2-}$).

We thank the Ramsay Trust for support for F. G. and the Central Research Fund, University of London, for a grant for $H_2^{18}O$. We thank the S.R.C. for grants for the Cary instrument and for the mixed gas laser.

[1/2425 Received, 17th December, 1971]